3.4.26 \(\int \frac {1}{a+b x^3} \, dx\) [326]

3.4.26.1 Optimal result
3.4.26.2 Mathematica [A] (verified)
3.4.26.3 Rubi [A] (verified)
3.4.26.4 Maple [C] (verified)
3.4.26.5 Fricas [A] (verification not implemented)
3.4.26.6 Sympy [A] (verification not implemented)
3.4.26.7 Maxima [A] (verification not implemented)
3.4.26.8 Giac [A] (verification not implemented)
3.4.26.9 Mupad [B] (verification not implemented)

3.4.26.1 Optimal result

Integrand size = 9, antiderivative size = 115 \[ \int \frac {1}{a+b x^3} \, dx=-\frac {\arctan \left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt {3} \sqrt [3]{a}}\right )}{\sqrt {3} a^{2/3} \sqrt [3]{b}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}-\frac {\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 a^{2/3} \sqrt [3]{b}} \]

output
1/3*ln(a^(1/3)+b^(1/3)*x)/a^(2/3)/b^(1/3)-1/6*ln(a^(2/3)-a^(1/3)*b^(1/3)*x 
+b^(2/3)*x^2)/a^(2/3)/b^(1/3)-1/3*arctan(1/3*(a^(1/3)-2*b^(1/3)*x)/a^(1/3) 
*3^(1/2))/a^(2/3)/b^(1/3)*3^(1/2)
 
3.4.26.2 Mathematica [A] (verified)

Time = 0.01 (sec) , antiderivative size = 89, normalized size of antiderivative = 0.77 \[ \int \frac {1}{a+b x^3} \, dx=-\frac {2 \sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right )-2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )+\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 a^{2/3} \sqrt [3]{b}} \]

input
Integrate[(a + b*x^3)^(-1),x]
 
output
-1/6*(2*Sqrt[3]*ArcTan[(1 - (2*b^(1/3)*x)/a^(1/3))/Sqrt[3]] - 2*Log[a^(1/3 
) + b^(1/3)*x] + Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2])/(a^(2/3)* 
b^(1/3))
 
3.4.26.3 Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 111, normalized size of antiderivative = 0.97, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.889, Rules used = {750, 16, 1142, 25, 27, 1082, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{a+b x^3} \, dx\)

\(\Big \downarrow \) 750

\(\displaystyle \frac {\int \frac {2 \sqrt [3]{a}-\sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 a^{2/3}}+\frac {\int \frac {1}{\sqrt [3]{b} x+\sqrt [3]{a}}dx}{3 a^{2/3}}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {\int \frac {2 \sqrt [3]{a}-\sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\)

\(\Big \downarrow \) 1142

\(\displaystyle \frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx-\frac {\int -\frac {\sqrt [3]{b} \left (\sqrt [3]{a}-2 \sqrt [3]{b} x\right )}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{2 \sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx+\frac {\int \frac {\sqrt [3]{b} \left (\sqrt [3]{a}-2 \sqrt [3]{b} x\right )}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{2 \sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx+\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx+\frac {3 \int \frac {1}{-\left (1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}\right )^2-3}d\left (1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}\right )}{\sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{b^{2/3} x^2-\sqrt [3]{a} \sqrt [3]{b} x+a^{2/3}}dx-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {-\frac {\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{2 \sqrt [3]{b}}-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}\)

input
Int[(a + b*x^3)^(-1),x]
 
output
Log[a^(1/3) + b^(1/3)*x]/(3*a^(2/3)*b^(1/3)) + (-((Sqrt[3]*ArcTan[(1 - (2* 
b^(1/3)*x)/a^(1/3))/Sqrt[3]])/b^(1/3)) - Log[a^(2/3) - a^(1/3)*b^(1/3)*x + 
 b^(2/3)*x^2]/(2*b^(1/3)))/(3*a^(2/3))
 

3.4.26.3.1 Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 750
Int[((a_) + (b_.)*(x_)^3)^(-1), x_Symbol] :> Simp[1/(3*Rt[a, 3]^2)   Int[1/ 
(Rt[a, 3] + Rt[b, 3]*x), x], x] + Simp[1/(3*Rt[a, 3]^2)   Int[(2*Rt[a, 3] - 
 Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3]^2*x^2), x], x] /; 
 FreeQ[{a, b}, x]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 
3.4.26.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 3.65 (sec) , antiderivative size = 27, normalized size of antiderivative = 0.23

method result size
risch \(\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{3}+a \right )}{\sum }\frac {\ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{2}}}{3 b}\) \(27\)
default \(\frac {\ln \left (x +\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}-\frac {\ln \left (x^{2}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x +\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}+\frac {\sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}\) \(91\)

input
int(1/(b*x^3+a),x,method=_RETURNVERBOSE)
 
output
1/3/b*sum(1/_R^2*ln(x-_R),_R=RootOf(_Z^3*b+a))
 
3.4.26.5 Fricas [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 299, normalized size of antiderivative = 2.60 \[ \int \frac {1}{a+b x^3} \, dx=\left [\frac {3 \, \sqrt {\frac {1}{3}} a b \sqrt {-\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}} \log \left (\frac {2 \, a b x^{3} - 3 \, \left (a^{2} b\right )^{\frac {1}{3}} a x - a^{2} + 3 \, \sqrt {\frac {1}{3}} {\left (2 \, a b x^{2} + \left (a^{2} b\right )^{\frac {2}{3}} x - \left (a^{2} b\right )^{\frac {1}{3}} a\right )} \sqrt {-\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}}}{b x^{3} + a}\right ) - \left (a^{2} b\right )^{\frac {2}{3}} \log \left (a b x^{2} - \left (a^{2} b\right )^{\frac {2}{3}} x + \left (a^{2} b\right )^{\frac {1}{3}} a\right ) + 2 \, \left (a^{2} b\right )^{\frac {2}{3}} \log \left (a b x + \left (a^{2} b\right )^{\frac {2}{3}}\right )}{6 \, a^{2} b}, \frac {6 \, \sqrt {\frac {1}{3}} a b \sqrt {\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}} \arctan \left (\frac {\sqrt {\frac {1}{3}} {\left (2 \, \left (a^{2} b\right )^{\frac {2}{3}} x - \left (a^{2} b\right )^{\frac {1}{3}} a\right )} \sqrt {\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}}}{a^{2}}\right ) - \left (a^{2} b\right )^{\frac {2}{3}} \log \left (a b x^{2} - \left (a^{2} b\right )^{\frac {2}{3}} x + \left (a^{2} b\right )^{\frac {1}{3}} a\right ) + 2 \, \left (a^{2} b\right )^{\frac {2}{3}} \log \left (a b x + \left (a^{2} b\right )^{\frac {2}{3}}\right )}{6 \, a^{2} b}\right ] \]

input
integrate(1/(b*x^3+a),x, algorithm="fricas")
 
output
[1/6*(3*sqrt(1/3)*a*b*sqrt(-(a^2*b)^(1/3)/b)*log((2*a*b*x^3 - 3*(a^2*b)^(1 
/3)*a*x - a^2 + 3*sqrt(1/3)*(2*a*b*x^2 + (a^2*b)^(2/3)*x - (a^2*b)^(1/3)*a 
)*sqrt(-(a^2*b)^(1/3)/b))/(b*x^3 + a)) - (a^2*b)^(2/3)*log(a*b*x^2 - (a^2* 
b)^(2/3)*x + (a^2*b)^(1/3)*a) + 2*(a^2*b)^(2/3)*log(a*b*x + (a^2*b)^(2/3)) 
)/(a^2*b), 1/6*(6*sqrt(1/3)*a*b*sqrt((a^2*b)^(1/3)/b)*arctan(sqrt(1/3)*(2* 
(a^2*b)^(2/3)*x - (a^2*b)^(1/3)*a)*sqrt((a^2*b)^(1/3)/b)/a^2) - (a^2*b)^(2 
/3)*log(a*b*x^2 - (a^2*b)^(2/3)*x + (a^2*b)^(1/3)*a) + 2*(a^2*b)^(2/3)*log 
(a*b*x + (a^2*b)^(2/3)))/(a^2*b)]
 
3.4.26.6 Sympy [A] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 20, normalized size of antiderivative = 0.17 \[ \int \frac {1}{a+b x^3} \, dx=\operatorname {RootSum} {\left (27 t^{3} a^{2} b - 1, \left ( t \mapsto t \log {\left (3 t a + x \right )} \right )\right )} \]

input
integrate(1/(b*x**3+a),x)
 
output
RootSum(27*_t**3*a**2*b - 1, Lambda(_t, _t*log(3*_t*a + x)))
 
3.4.26.7 Maxima [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 98, normalized size of antiderivative = 0.85 \[ \int \frac {1}{a+b x^3} \, dx=\frac {\sqrt {3} \arctan \left (\frac {\sqrt {3} {\left (2 \, x - \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{3 \, b \left (\frac {a}{b}\right )^{\frac {2}{3}}} - \frac {\log \left (x^{2} - x \left (\frac {a}{b}\right )^{\frac {1}{3}} + \left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 \, b \left (\frac {a}{b}\right )^{\frac {2}{3}}} + \frac {\log \left (x + \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 \, b \left (\frac {a}{b}\right )^{\frac {2}{3}}} \]

input
integrate(1/(b*x^3+a),x, algorithm="maxima")
 
output
1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x - (a/b)^(1/3))/(a/b)^(1/3))/(b*(a/b)^( 
2/3)) - 1/6*log(x^2 - x*(a/b)^(1/3) + (a/b)^(2/3))/(b*(a/b)^(2/3)) + 1/3*l 
og(x + (a/b)^(1/3))/(b*(a/b)^(2/3))
 
3.4.26.8 Giac [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 112, normalized size of antiderivative = 0.97 \[ \int \frac {1}{a+b x^3} \, dx=-\frac {\left (-\frac {a}{b}\right )^{\frac {1}{3}} \log \left ({\left | x - \left (-\frac {a}{b}\right )^{\frac {1}{3}} \right |}\right )}{3 \, a} + \frac {\sqrt {3} \left (-a b^{2}\right )^{\frac {1}{3}} \arctan \left (\frac {\sqrt {3} {\left (2 \, x + \left (-\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (-\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{3 \, a b} + \frac {\left (-a b^{2}\right )^{\frac {1}{3}} \log \left (x^{2} + x \left (-\frac {a}{b}\right )^{\frac {1}{3}} + \left (-\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 \, a b} \]

input
integrate(1/(b*x^3+a),x, algorithm="giac")
 
output
-1/3*(-a/b)^(1/3)*log(abs(x - (-a/b)^(1/3)))/a + 1/3*sqrt(3)*(-a*b^2)^(1/3 
)*arctan(1/3*sqrt(3)*(2*x + (-a/b)^(1/3))/(-a/b)^(1/3))/(a*b) + 1/6*(-a*b^ 
2)^(1/3)*log(x^2 + x*(-a/b)^(1/3) + (-a/b)^(2/3))/(a*b)
 
3.4.26.9 Mupad [B] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 99, normalized size of antiderivative = 0.86 \[ \int \frac {1}{a+b x^3} \, dx=\frac {\ln \left (b^{1/3}\,x+a^{1/3}\right )}{3\,a^{2/3}\,b^{1/3}}+\frac {\ln \left (3\,b^2\,x+\frac {3\,a^{1/3}\,b^{5/3}\,\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}{2}\right )\,\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}{6\,a^{2/3}\,b^{1/3}}-\frac {\ln \left (3\,b^2\,x-\frac {3\,a^{1/3}\,b^{5/3}\,\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}{2}\right )\,\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}{6\,a^{2/3}\,b^{1/3}} \]

input
int(1/(a + b*x^3),x)
 
output
log(b^(1/3)*x + a^(1/3))/(3*a^(2/3)*b^(1/3)) + (log(3*b^2*x + (3*a^(1/3)*b 
^(5/3)*(3^(1/2)*1i - 1))/2)*(3^(1/2)*1i - 1))/(6*a^(2/3)*b^(1/3)) - (log(3 
*b^2*x - (3*a^(1/3)*b^(5/3)*(3^(1/2)*1i + 1))/2)*(3^(1/2)*1i + 1))/(6*a^(2 
/3)*b^(1/3))